PolyJet Bio-Clear Resin

Back to Materials

PolyJet Bio-Clear Resin

Stratasys MED610


Biocompatible MED610 is a rigid medical rapid prototyping material ideal for medical and dental applications requiring prolonged patient contact.


Min. Order Value $22

Est. Lead Time 4 days


Max Build Size

1000 x 800 x 500 mm

Min Build Size

2 x 2 x 2 mm

Default Layer Height

0.016 mm

Optional Layer Heights

0.016 mm

Tolerance

卤0.2% (with a lower limit of 卤0.2 mm)

Heat Endurance

Up to 45 鈩


Smooth 鈽呪槄鈽呪槄鈽

Detail 鈽呪槄鈽呪槄

Accuracy 鈽呪槄鈽呪槄

Rigidity 鈽呪槄鈽

Flexibility 鈽呪槄鈽

Available Colors

Translucent

Available Post Process

Gallery

Suitable For

Functional prototypes and end products,
Complex designs with intricate details,
Fine-detail models with smooth surfaces,
Cases, holders, adapters,
Sales, marketing and exhibition models,
Form and fit testing,
Functional prototyping and testing

Not Suitable For

Large models,
Cavities within design (unless making use of escape holes),
Low-cost prototype

Additional Info

Biocompatible MED610, a PolyJet photopolymer, is a rigid material offering transparency and direct patient contact. Rapidly prototype medical and dental products including dental implant surgical guides and surgical orthopedic guides. VeroGlaze, MED620, an opaque material with A2 shading provides the best color match in the dental industry.

Biocompatible MED610 and MED620 materials are ideal for medical and dental applications requiring precise visualization and prolonged skin contact, up to 30 days skin contact and up to to 24 hours mucosal membrane contact. Biocompatible material has five medical approvals including cytotoxicity, genotoxicity, delayed type hypersensitivity, irritation and USP plastic class VI.

Min Supported Wall Thickness
A supported wall is one connected to other walls on two or more sides.
0.6 mm
Min Unsupported Wall Thickness
An unsupported wall is one connected to other walls on less than two sides.
0.8 mm
Min Supported Wires
A wire is a feature whose length is greater than five times its width. A supported wire is connected to walls on both sides.
0.6 mm
Min Unsupported Wires
A wire is a feature whose length is greater than five times its width. An unsupported wire is connected to walls on less than two sides.
0.8 mm
Min Hole Diameter
The accuracy of a hole not only depends on the diameter of the hole, but also on the thickness of the wall through which the hole is printed. The thicker the wall section, the less accurate the hole becomes. Through holes must also allow for line-of-sight clearance to ensure all material is cleared during post-processing.
0.8 mm
Min Embossed Detail
A detail is a feature whose length is less than twice its width.
The minimum detail is determined by the printer’s resolution.When detail dimensions are below the minimum, the printer may not be able to accurately replicate them. Details that are too small can also be smoothed over in the polishing process.
To ensure details come out clearly, make them larger than the indicated minimum. We may refrain from printing products with details smaller than the minimum, since the final product will not be true to your design. If your product has details smaller than the minimum, try making them larger, removing them, or considering a material with finer detail.
0.4 mm
Min Engraved Detail
A detail is a feature whose length is less than twice its width. Engraved or debossed details go into a surface.
0.4 mm
Min Clearance
Clearance is the space between any two parts, walls or wires.
To ensure a successful product, make the clearance between parts, walls, and wires greater than the indicated minimum. If your clearance is too small, try making the gap bigger, or consider fusing the parts or features if their independence is unnecessary. You can also try a material with a smaller minimum clearance.
0.4 mm
Min Escape Holes
Escape holes allow unbuilt material inside hollow products to be removed.
Normally you don’t need to consider this, our technician will add escape holes before printing.
When products contain hollow cavities, they are often filled with powder/liquid even after they are removed from the build tray. If escape holes are not large enough, or the geometry of the product makes it difficult to shake or blast the powder out, we cannot successfully clean it.
8 mm
Interlocking/moving or enclosed parts?
Sometimes the interlocking/moving parts can’t be printed, since the supports inside the cross section can’t be removed.
Require Support Material?
Because each layer needs to build off the last, for some material, angles of more than 45 degrees generally require supports to be printed along with the design. Supports are not inherently detrimental for your design, but they do add complexity to the printing process and lead to less smooth finish on overhanging parts.
Yes

Feature

Watertight

Foodsafe

Glueable

Recycleable

Biocompatible

Biodegradable

Flame Retardant

Conductive

Untested

3D Printer

Stratasys J750

Material Spec Sheet

PolyJet Bio-Clear Resin is 3D printed using MJP/Polyjet (MultiJet Modeling/Polyjet) technology.

PolyJet/MJP Process

PolyJet prototyping technology is used to build your design with this material.

Stratasys’ patented PolyJet inkjet technology works by jetting photopolymer materials in ultra-thin layers onto a build tray, layer by layer until the model is completed. Each photopolymer layer is cured by UV light immediately after being jetted, producing fully cured models that can be handled and used immediately. The gel-like support material, which is specially designed to support complicated geometries, can easily be removed by hand and water jetting.

How is MJP/Polyjet 3D Printing Working?





銆2025-01-16銆

馃摙 Important: New orders will NOT be shipped until Feb.5th!
Happy the year of 馃悕 to you all! See our 2025 all-year service calendar here!

馃憠More detail
6% OFF for Insta3DP - Automatic 3D printing quotation! Coupon Code: insta3dpbeta2