PolyJet Rubber

Back to Materials

PolyJet Rubber

Stratasys Agilus+Vero


This material enables you to simulate a wide variety of finished products, such as non-slip or soft surfaces on consumer electronics, medical devices and automotive interiors.


Min. Order Value $25

Est. Lead Time 2 days


Max Build Size

342 x 342 x 200 mm

Min Build Size

5 x 5 x 5 mm

Default Layer Height

0.032 mm

Optional Layer Heights

0.032 mm

Tolerance

卤0.1% (with a lower limit of 卤0.1 mm)

Heat Endurance

Up to 48 鈩


Smooth 鈽呪槄鈽呪槄

Detail 鈽呪槄鈽呪槄

Accuracy 鈽呪槄鈽呪槄

Rigidity 鈽呪槄

Flexibility 鈽呪槄鈽呪槄鈽

Available Colors

White

,

Black

Available Post Process

Gallery

Suitable For

Fine-detail models with smooth surfaces,
Sales, marketing and exhibition models,
Form and fit testing

Not Suitable For

Large models,
Cavities within design (unless making use of escape holes)

Additional Info

Min Supported Wall Thickness
A supported wall is one connected to other walls on two or more sides.
1 mm
Min Unsupported Wall Thickness
An unsupported wall is one connected to other walls on less than two sides.
1 mm
Min Supported Wires
A wire is a feature whose length is greater than five times its width. A supported wire is connected to walls on both sides.
1 mm
Min Unsupported Wires
A wire is a feature whose length is greater than five times its width. An unsupported wire is connected to walls on less than two sides.
1 mm
Min Hole Diameter
The accuracy of a hole not only depends on the diameter of the hole, but also on the thickness of the wall through which the hole is printed. The thicker the wall section, the less accurate the hole becomes. Through holes must also allow for line-of-sight clearance to ensure all material is cleared during post-processing.
1 mm
Min Embossed Detail
A detail is a feature whose length is less than twice its width.
The minimum detail is determined by the printer’s resolution.When detail dimensions are below the minimum, the printer may not be able to accurately replicate them. Details that are too small can also be smoothed over in the polishing process.
To ensure details come out clearly, make them larger than the indicated minimum. We may refrain from printing products with details smaller than the minimum, since the final product will not be true to your design. If your product has details smaller than the minimum, try making them larger, removing them, or considering a material with finer detail.
0.5 mm
Min Engraved Detail
A detail is a feature whose length is less than twice its width. Engraved or debossed details go into a surface.
0.5 mm
Min Clearance
Clearance is the space between any two parts, walls or wires.
To ensure a successful product, make the clearance between parts, walls, and wires greater than the indicated minimum. If your clearance is too small, try making the gap bigger, or consider fusing the parts or features if their independence is unnecessary. You can also try a material with a smaller minimum clearance.
0.8 mm
Min Escape Holes
Escape holes allow unbuilt material inside hollow products to be removed.
Normally you don’t need to consider this, our technician will add escape holes before printing.
When products contain hollow cavities, they are often filled with powder/liquid even after they are removed from the build tray. If escape holes are not large enough, or the geometry of the product makes it difficult to shake or blast the powder out, we cannot successfully clean it.
8 mm
Interlocking/moving or enclosed parts?
Sometimes the interlocking/moving parts can’t be printed, since the supports inside the cross section can’t be removed.
Require Support Material?
Because each layer needs to build off the last, for some material, angles of more than 45 degrees generally require supports to be printed along with the design. Supports are not inherently detrimental for your design, but they do add complexity to the printing process and lead to less smooth finish on overhanging parts.
Yes

Feature

Watertight

Foodsafe

Glueable

Recycleable

Biocompatible

Biodegradable

Flame Retardant

Conductive

Untested
Untested

3D Printer

Stratasys J750

Material Spec Sheet

PolyJet Rubber is 3D printed using MJP/Polyjet (MultiJet Modeling/Polyjet) technology.

PolyJet/MJP Process

PolyJet prototyping technology is used to build your design with this material.

Stratasys’ patented PolyJet inkjet technology works by jetting photopolymer materials in ultra-thin layers onto a build tray, layer by layer until the model is completed. Each photopolymer layer is cured by UV light immediately after being jetted, producing fully cured models that can be handled and used immediately. The gel-like support material, which is specially designed to support complicated geometries, can easily be removed by hand and water jetting.

How is MJP/Polyjet 3D Printing Working?





馃馃徏鈥嶁檪锔 Your Vision, Our Precision! Turn your ideas into reality This Black Friday!
15% OFF for all MFG services during Nov. 26th - Dec. 2nd (EST).Coupon Code: 24BLKF15